↳ ITRS
↳ ITRStoIDPProof
z
f(TRUE, x, y, z) → f(>@z(x, +@z(y, z)), x, +@z(y, 1@z), z)
f(TRUE, x, y, z) → f(>@z(x, +@z(y, z)), x, y, +@z(z, 1@z))
f(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
f(TRUE, x, y, z) → f(>@z(x, +@z(y, z)), x, +@z(y, 1@z), z)
f(TRUE, x, y, z) → f(>@z(x, +@z(y, z)), x, y, +@z(z, 1@z))
(0) -> (0), if ((z[0] →* z[0]a)∧(x[0] →* x[0]a)∧(+@z(y[0], 1@z) →* y[0]a)∧(>@z(x[0], +@z(y[0], z[0])) →* TRUE))
(0) -> (1), if ((z[0] →* z[1])∧(x[0] →* x[1])∧(+@z(y[0], 1@z) →* y[1])∧(>@z(x[0], +@z(y[0], z[0])) →* TRUE))
(1) -> (0), if ((+@z(z[1], 1@z) →* z[0])∧(x[1] →* x[0])∧(y[1] →* y[0])∧(>@z(x[1], +@z(y[1], z[1])) →* TRUE))
(1) -> (1), if ((+@z(z[1], 1@z) →* z[1]a)∧(x[1] →* x[1]a)∧(y[1] →* y[1]a)∧(>@z(x[1], +@z(y[1], z[1])) →* TRUE))
f(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (0), if ((z[0] →* z[0]a)∧(x[0] →* x[0]a)∧(+@z(y[0], 1@z) →* y[0]a)∧(>@z(x[0], +@z(y[0], z[0])) →* TRUE))
(0) -> (1), if ((z[0] →* z[1])∧(x[0] →* x[1])∧(+@z(y[0], 1@z) →* y[1])∧(>@z(x[0], +@z(y[0], z[0])) →* TRUE))
(1) -> (0), if ((+@z(z[1], 1@z) →* z[0])∧(x[1] →* x[0])∧(y[1] →* y[0])∧(>@z(x[1], +@z(y[1], z[1])) →* TRUE))
(1) -> (1), if ((+@z(z[1], 1@z) →* z[1]a)∧(x[1] →* x[1]a)∧(y[1] →* y[1]a)∧(>@z(x[1], +@z(y[1], z[1])) →* TRUE))
f(TRUE, x0, x1, x2)
(1) (z[0]=z[0]1∧x[0]=x[0]1∧x[0]1=x[1]∧>@z(x[0]1, +@z(y[0]1, z[0]1))=TRUE∧>@z(x[0], +@z(y[0], z[0]))=TRUE∧+@z(y[0]1, 1@z)=y[1]∧z[0]1=z[1]∧+@z(y[0], 1@z)=y[0]1 ⇒ F(TRUE, x[0]1, y[0]1, z[0]1)≥NonInfC∧F(TRUE, x[0]1, y[0]1, z[0]1)≥F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)∧(UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(2) (>@z(x[0], +@z(+@z(y[0], 1@z), z[0]))=TRUE∧>@z(x[0], +@z(y[0], z[0]))=TRUE ⇒ F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥NonInfC∧F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥F(>@z(x[0], +@z(+@z(y[0], 1@z), z[0])), x[0], +@z(+@z(y[0], 1@z), 1@z), z[0])∧(UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(3) (x[0] + -2 + (-1)y[0] + (-1)z[0] ≥ 0∧x[0] + -1 + (-1)y[0] + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (x[0] + -2 + (-1)y[0] + (-1)z[0] ≥ 0∧x[0] + -1 + (-1)y[0] + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(5) (x[0] + -1 + (-1)y[0] + (-1)z[0] ≥ 0∧x[0] + -2 + (-1)y[0] + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(6) (1 + y[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(7) (1 + y[0] ≥ 0∧y[0] ≥ 0∧z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(8) (1 + y[0] ≥ 0∧y[0] ≥ 0∧z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(9) (1 + y[0] ≥ 0∧y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(10) (1 + y[0] ≥ 0∧y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(11) (1 + y[0] ≥ 0∧y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) (1 + y[0] ≥ 0∧y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) (z[0]=z[0]1∧x[0]=x[0]1∧>@z(x[1], +@z(y[1], z[1]))=TRUE∧>@z(x[0], +@z(y[0], z[0]))=TRUE∧y[1]=y[0]∧x[1]=x[0]∧+@z(y[0], 1@z)=y[0]1∧+@z(z[1], 1@z)=z[0] ⇒ F(TRUE, x[0], y[0], z[0])≥NonInfC∧F(TRUE, x[0], y[0], z[0])≥F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])∧(UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥))
(14) (>@z(x[1], +@z(y[1], z[1]))=TRUE∧>@z(x[1], +@z(y[1], +@z(z[1], 1@z)))=TRUE ⇒ F(TRUE, x[1], y[1], +@z(z[1], 1@z))≥NonInfC∧F(TRUE, x[1], y[1], +@z(z[1], 1@z))≥F(>@z(x[1], +@z(y[1], +@z(z[1], 1@z))), x[1], +@z(y[1], 1@z), +@z(z[1], 1@z))∧(UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥))
(15) (x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0∧x[1] + -2 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(16) (x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0∧x[1] + -2 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(17) (x[1] + -2 + (-1)y[1] + (-1)z[1] ≥ 0∧x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(18) (-1 + x[1] ≥ 0∧x[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(19) (x[1] ≥ 0∧1 + x[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(20) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(21) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(22) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(23) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(24) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(25) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(26) (z[0]=z[0]1∧x[0]=x[0]1∧+@z(y[0]1, 1@z)=y[0]2∧>@z(x[0]1, +@z(y[0]1, z[0]1))=TRUE∧>@z(x[0], +@z(y[0], z[0]))=TRUE∧x[0]1=x[0]2∧z[0]1=z[0]2∧+@z(y[0], 1@z)=y[0]1 ⇒ F(TRUE, x[0]1, y[0]1, z[0]1)≥NonInfC∧F(TRUE, x[0]1, y[0]1, z[0]1)≥F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)∧(UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(27) (>@z(x[0], +@z(+@z(y[0], 1@z), z[0]))=TRUE∧>@z(x[0], +@z(y[0], z[0]))=TRUE ⇒ F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥NonInfC∧F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥F(>@z(x[0], +@z(+@z(y[0], 1@z), z[0])), x[0], +@z(+@z(y[0], 1@z), 1@z), z[0])∧(UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(28) (x[0] + -2 + (-1)y[0] + (-1)z[0] ≥ 0∧x[0] + -1 + (-1)y[0] + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(29) (x[0] + -2 + (-1)y[0] + (-1)z[0] ≥ 0∧x[0] + -1 + (-1)y[0] + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(30) (x[0] + -2 + (-1)y[0] + (-1)z[0] ≥ 0∧x[0] + -1 + (-1)y[0] + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(31) (-1 + y[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(32) (y[0] ≥ 0∧1 + y[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(33) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(34) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(35) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(36) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(37) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(38) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧0 ≥ 0)
(39) (+@z(y[0], 1@z)=y[1]1∧x[0]=x[1]1∧z[0]=z[1]1∧>@z(x[1], +@z(y[1], z[1]))=TRUE∧>@z(x[0], +@z(y[0], z[0]))=TRUE∧y[1]=y[0]∧x[1]=x[0]∧+@z(z[1], 1@z)=z[0] ⇒ F(TRUE, x[0], y[0], z[0])≥NonInfC∧F(TRUE, x[0], y[0], z[0])≥F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])∧(UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥))
(40) (>@z(x[1], +@z(y[1], z[1]))=TRUE∧>@z(x[1], +@z(y[1], +@z(z[1], 1@z)))=TRUE ⇒ F(TRUE, x[1], y[1], +@z(z[1], 1@z))≥NonInfC∧F(TRUE, x[1], y[1], +@z(z[1], 1@z))≥F(>@z(x[1], +@z(y[1], +@z(z[1], 1@z))), x[1], +@z(y[1], 1@z), +@z(z[1], 1@z))∧(UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥))
(41) (x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0∧x[1] + -2 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(42) (x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0∧x[1] + -2 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(43) (x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0∧x[1] + -2 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0)
(44) (x[1] ≥ 0∧-1 + x[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0)
(45) (1 + x[1] ≥ 0∧x[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0)
(46) (1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0)
(47) (1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0)
(48) (1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0)
(49) (1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0)
(50) (1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0)
(51) (1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])), ≥)∧0 ≥ 0)
(52) (+@z(z[1], 1@z)=z[1]1∧>@z(x[1]1, +@z(y[1]1, z[1]1))=TRUE∧+@z(z[1]1, 1@z)=z[1]2∧y[1]1=y[1]2∧x[1]1=x[1]2∧>@z(x[1], +@z(y[1], z[1]))=TRUE∧y[1]=y[1]1∧x[1]=x[1]1 ⇒ F(TRUE, x[1]1, y[1]1, z[1]1)≥NonInfC∧F(TRUE, x[1]1, y[1]1, z[1]1)≥F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))∧(UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥))
(53) (>@z(x[1], +@z(y[1], +@z(z[1], 1@z)))=TRUE∧>@z(x[1], +@z(y[1], z[1]))=TRUE ⇒ F(TRUE, x[1], y[1], +@z(z[1], 1@z))≥NonInfC∧F(TRUE, x[1], y[1], +@z(z[1], 1@z))≥F(>@z(x[1], +@z(y[1], +@z(z[1], 1@z))), x[1], y[1], +@z(+@z(z[1], 1@z), 1@z))∧(UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥))
(54) (x[1] + -2 + (-1)y[1] + (-1)z[1] ≥ 0∧x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧-2 + (-1)Bound + (-1)z[1] + (-1)y[1] + x[1] ≥ 0∧1 ≥ 0)
(55) (x[1] + -2 + (-1)y[1] + (-1)z[1] ≥ 0∧x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧-2 + (-1)Bound + (-1)z[1] + (-1)y[1] + x[1] ≥ 0∧1 ≥ 0)
(56) (x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0∧x[1] + -2 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧1 ≥ 0∧-2 + (-1)Bound + (-1)z[1] + (-1)y[1] + x[1] ≥ 0)
(57) (1 + x[1] ≥ 0∧x[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + x[1] ≥ 0)
(58) (1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + x[1] ≥ 0)
(59) (1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + x[1] ≥ 0)
(60) (1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + x[1] ≥ 0)
(61) (1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + x[1] ≥ 0)
(62) (1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + x[1] ≥ 0)
(63) (1 + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + x[1] ≥ 0)
(64) (+@z(z[1], 1@z)=z[1]1∧>@z(x[1], +@z(y[1], z[1]))=TRUE∧>@z(x[0], +@z(y[0], z[0]))=TRUE∧y[1]=y[1]1∧x[1]=x[1]1∧+@z(y[0], 1@z)=y[1]∧x[0]=x[1]∧z[0]=z[1] ⇒ F(TRUE, x[1], y[1], z[1])≥NonInfC∧F(TRUE, x[1], y[1], z[1])≥F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))∧(UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥))
(65) (>@z(x[0], +@z(+@z(y[0], 1@z), z[0]))=TRUE∧>@z(x[0], +@z(y[0], z[0]))=TRUE ⇒ F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥NonInfC∧F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥F(>@z(x[0], +@z(+@z(y[0], 1@z), z[0])), x[0], +@z(y[0], 1@z), +@z(z[0], 1@z))∧(UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥))
(66) (x[0] + -2 + (-1)y[0] + (-1)z[0] ≥ 0∧x[0] + -1 + (-1)y[0] + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧-2 + (-1)Bound + (-1)z[0] + (-1)y[0] + x[0] ≥ 0∧1 ≥ 0)
(67) (x[0] + -2 + (-1)y[0] + (-1)z[0] ≥ 0∧x[0] + -1 + (-1)y[0] + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧-2 + (-1)Bound + (-1)z[0] + (-1)y[0] + x[0] ≥ 0∧1 ≥ 0)
(68) (x[0] + -2 + (-1)y[0] + (-1)z[0] ≥ 0∧x[0] + -1 + (-1)y[0] + (-1)z[0] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧-2 + (-1)Bound + (-1)z[0] + (-1)y[0] + x[0] ≥ 0)
(69) (-1 + y[0] ≥ 0∧y[0] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧-1 + (-1)Bound + y[0] ≥ 0)
(70) (y[0] ≥ 0∧1 + y[0] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + y[0] ≥ 0)
(71) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + y[0] ≥ 0)
(72) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + y[0] ≥ 0)
(73) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + y[0] ≥ 0)
(74) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + y[0] ≥ 0)
(75) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + y[0] ≥ 0)
(76) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧(-1)Bound + y[0] ≥ 0)
(77) (+@z(z[1], 1@z)=z[0]1∧y[1]=y[0]1∧x[1]=x[0]1∧>@z(x[1], +@z(y[1], z[1]))=TRUE∧>@z(x[0], +@z(y[0], z[0]))=TRUE∧+@z(y[0], 1@z)=y[1]∧x[0]=x[1]∧z[0]=z[1] ⇒ F(TRUE, x[1], y[1], z[1])≥NonInfC∧F(TRUE, x[1], y[1], z[1])≥F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))∧(UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥))
(78) (>@z(x[0], +@z(+@z(y[0], 1@z), z[0]))=TRUE∧>@z(x[0], +@z(y[0], z[0]))=TRUE ⇒ F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥NonInfC∧F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥F(>@z(x[0], +@z(+@z(y[0], 1@z), z[0])), x[0], +@z(y[0], 1@z), +@z(z[0], 1@z))∧(UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥))
(79) (x[0] + -2 + (-1)y[0] + (-1)z[0] ≥ 0∧x[0] + -1 + (-1)y[0] + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧-2 + (-1)Bound + (-1)z[0] + (-1)y[0] + x[0] ≥ 0∧1 ≥ 0)
(80) (x[0] + -2 + (-1)y[0] + (-1)z[0] ≥ 0∧x[0] + -1 + (-1)y[0] + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧-2 + (-1)Bound + (-1)z[0] + (-1)y[0] + x[0] ≥ 0∧1 ≥ 0)
(81) (x[0] + -2 + (-1)y[0] + (-1)z[0] ≥ 0∧x[0] + -1 + (-1)y[0] + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧1 ≥ 0∧-2 + (-1)Bound + (-1)z[0] + (-1)y[0] + x[0] ≥ 0)
(82) (y[0] ≥ 0∧1 + y[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + y[0] ≥ 0)
(83) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + y[0] ≥ 0)
(84) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + y[0] ≥ 0)
(85) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + y[0] ≥ 0)
(86) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + y[0] ≥ 0)
(87) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + y[0] ≥ 0)
(88) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + y[0] ≥ 0)
(89) (+@z(z[1], 1@z)=z[1]1∧x[1]1=x[0]∧>@z(x[1]1, +@z(y[1]1, z[1]1))=TRUE∧+@z(z[1]1, 1@z)=z[0]∧>@z(x[1], +@z(y[1], z[1]))=TRUE∧y[1]=y[1]1∧x[1]=x[1]1∧y[1]1=y[0] ⇒ F(TRUE, x[1]1, y[1]1, z[1]1)≥NonInfC∧F(TRUE, x[1]1, y[1]1, z[1]1)≥F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))∧(UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥))
(90) (>@z(x[1], +@z(y[1], +@z(z[1], 1@z)))=TRUE∧>@z(x[1], +@z(y[1], z[1]))=TRUE ⇒ F(TRUE, x[1], y[1], +@z(z[1], 1@z))≥NonInfC∧F(TRUE, x[1], y[1], +@z(z[1], 1@z))≥F(>@z(x[1], +@z(y[1], +@z(z[1], 1@z))), x[1], y[1], +@z(+@z(z[1], 1@z), 1@z))∧(UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥))
(91) (x[1] + -2 + (-1)y[1] + (-1)z[1] ≥ 0∧x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧-2 + (-1)Bound + (-1)z[1] + (-1)y[1] + x[1] ≥ 0∧1 ≥ 0)
(92) (x[1] + -2 + (-1)y[1] + (-1)z[1] ≥ 0∧x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧-2 + (-1)Bound + (-1)z[1] + (-1)y[1] + x[1] ≥ 0∧1 ≥ 0)
(93) (x[1] + -2 + (-1)y[1] + (-1)z[1] ≥ 0∧x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧1 ≥ 0∧-2 + (-1)Bound + (-1)z[1] + (-1)y[1] + x[1] ≥ 0)
(94) (-1 + x[1] ≥ 0∧x[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧1 ≥ 0∧-1 + (-1)Bound + x[1] ≥ 0)
(95) (x[1] ≥ 0∧1 + x[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + x[1] ≥ 0)
(96) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + x[1] ≥ 0)
(97) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + x[1] ≥ 0)
(98) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + x[1] ≥ 0)
(99) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + x[1] ≥ 0)
(100) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + x[1] ≥ 0)
(101) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧1 ≥ 0∧(-1)Bound + x[1] ≥ 0)
POL(F(x1, x2, x3, x4)) = -1 + (-1)x4 + (-1)x3 + x2
POL(TRUE) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
F(TRUE, x[0], y[0], z[0]) → F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])
F(TRUE, x[1], y[1], z[1]) → F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))
F(TRUE, x[1], y[1], z[1]) → F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(0) -> (0), if ((z[0] →* z[0]a)∧(x[0] →* x[0]a)∧(+@z(y[0], 1@z) →* y[0]a)∧(>@z(x[0], +@z(y[0], z[0])) →* TRUE))
f(TRUE, x0, x1, x2)
(1) (z[0]=z[0]1∧x[0]=x[0]1∧+@z(y[0]1, 1@z)=y[0]2∧>@z(x[0]1, +@z(y[0]1, z[0]1))=TRUE∧>@z(x[0], +@z(y[0], z[0]))=TRUE∧x[0]1=x[0]2∧z[0]1=z[0]2∧+@z(y[0], 1@z)=y[0]1 ⇒ F(TRUE, x[0]1, y[0]1, z[0]1)≥NonInfC∧F(TRUE, x[0]1, y[0]1, z[0]1)≥F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)∧(UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(2) (>@z(x[0], +@z(+@z(y[0], 1@z), z[0]))=TRUE∧>@z(x[0], +@z(y[0], z[0]))=TRUE ⇒ F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥NonInfC∧F(TRUE, x[0], +@z(y[0], 1@z), z[0])≥F(>@z(x[0], +@z(+@z(y[0], 1@z), z[0])), x[0], +@z(+@z(y[0], 1@z), 1@z), z[0])∧(UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥))
(3) (x[0] + -2 + (-1)y[0] + (-1)z[0] ≥ 0∧x[0] + -1 + (-1)y[0] + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧-2 + (-1)Bound + (-1)z[0] + (-1)y[0] + x[0] ≥ 0∧0 ≥ 0)
(4) (x[0] + -2 + (-1)y[0] + (-1)z[0] ≥ 0∧x[0] + -1 + (-1)y[0] + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧-2 + (-1)Bound + (-1)z[0] + (-1)y[0] + x[0] ≥ 0∧0 ≥ 0)
(5) (x[0] + -2 + (-1)y[0] + (-1)z[0] ≥ 0∧x[0] + -1 + (-1)y[0] + (-1)z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧-2 + (-1)Bound + (-1)z[0] + (-1)y[0] + x[0] ≥ 0)
(6) (-1 + y[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧-1 + (-1)Bound + y[0] ≥ 0)
(7) (y[0] ≥ 0∧1 + y[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧(-1)Bound + y[0] ≥ 0)
(8) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧(-1)Bound + y[0] ≥ 0)
(9) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧(-1)Bound + y[0] ≥ 0)
(10) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧(-1)Bound + y[0] ≥ 0)
(11) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧(-1)Bound + y[0] ≥ 0)
(12) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧(-1)Bound + y[0] ≥ 0)
(13) (y[0] ≥ 0∧1 + y[0] ≥ 0∧z[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, +@z(y[0]1, z[0]1)), x[0]1, +@z(y[0]1, 1@z), z[0]1)), ≥)∧0 ≥ 0∧(-1)Bound + y[0] ≥ 0)
POL(F(x1, x2, x3, x4)) = -1 + (-1)x4 + (-1)x3 + x2
POL(TRUE) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
F(TRUE, x[0], y[0], z[0]) → F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])
F(TRUE, x[0], y[0], z[0]) → F(>@z(x[0], +@z(y[0], z[0])), x[0], +@z(y[0], 1@z), z[0])
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
f(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDPNonInfProof
z
(1) -> (1), if ((+@z(z[1], 1@z) →* z[1]a)∧(x[1] →* x[1]a)∧(y[1] →* y[1]a)∧(>@z(x[1], +@z(y[1], z[1])) →* TRUE))
f(TRUE, x0, x1, x2)
(1) (+@z(z[1], 1@z)=z[1]1∧>@z(x[1]1, +@z(y[1]1, z[1]1))=TRUE∧+@z(z[1]1, 1@z)=z[1]2∧y[1]1=y[1]2∧x[1]1=x[1]2∧>@z(x[1], +@z(y[1], z[1]))=TRUE∧y[1]=y[1]1∧x[1]=x[1]1 ⇒ F(TRUE, x[1]1, y[1]1, z[1]1)≥NonInfC∧F(TRUE, x[1]1, y[1]1, z[1]1)≥F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))∧(UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥))
(2) (>@z(x[1], +@z(y[1], +@z(z[1], 1@z)))=TRUE∧>@z(x[1], +@z(y[1], z[1]))=TRUE ⇒ F(TRUE, x[1], y[1], +@z(z[1], 1@z))≥NonInfC∧F(TRUE, x[1], y[1], +@z(z[1], 1@z))≥F(>@z(x[1], +@z(y[1], +@z(z[1], 1@z))), x[1], y[1], +@z(+@z(z[1], 1@z), 1@z))∧(UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥))
(3) (x[1] + -2 + (-1)y[1] + (-1)z[1] ≥ 0∧x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧-2 + (-1)Bound + (-1)z[1] + (-1)y[1] + x[1] ≥ 0∧0 ≥ 0)
(4) (x[1] + -2 + (-1)y[1] + (-1)z[1] ≥ 0∧x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧-2 + (-1)Bound + (-1)z[1] + (-1)y[1] + x[1] ≥ 0∧0 ≥ 0)
(5) (x[1] + -2 + (-1)y[1] + (-1)z[1] ≥ 0∧x[1] + -1 + (-1)y[1] + (-1)z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧-2 + (-1)Bound + (-1)z[1] + (-1)y[1] + x[1] ≥ 0∧0 ≥ 0)
(6) (-1 + x[1] ≥ 0∧x[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧-1 + (-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(7) (x[1] ≥ 0∧1 + x[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(8) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(9) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(10) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(11) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(12) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(13) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(F(>@z(x[1]1, +@z(y[1]1, z[1]1)), x[1]1, y[1]1, +@z(z[1]1, 1@z))), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
POL(F(x1, x2, x3, x4)) = -1 + (-1)x4 + (-1)x3 + x2
POL(TRUE) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
F(TRUE, x[1], y[1], z[1]) → F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))
F(TRUE, x[1], y[1], z[1]) → F(>@z(x[1], +@z(y[1], z[1])), x[1], y[1], +@z(z[1], 1@z))
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
f(TRUE, x0, x1, x2)